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Ted W. Larson
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ABSTRACT

Automared analysis using paltern recognition and neural
network software can help interpret data, call attention o
potential anomalics, and improve safeguards clfectiveness.
Automated sofiware analysis, based on patiem recognition and
neural networks, was applied to data collected from a radiation
core discharge monitor system located adjacent to an on-load
reactor core. Unatiended radiation sensors continuously col-
lect data 1o monitor on-line refueling operations in the reactor.
The huge volume of data collected from a number of radiation
channels makes it difficult for a safeguards inspector o review
it all, check for consistency among the measurement channels,
and find anomalies. Pattem recognition and neural network
software can analyzc large volumes of data from continuous,
unattended measurements, thereby improving and automating
the detection of anomalies. We developed a prototype pattern
recognition program that deteninines the reactor power level
and idenufies the imes when fuel bundles are pushed through
the core during on line refueling. Neural network models were
also developed o predict fuel bundle burnup to calculnte the
region on the on low! reactor face from which fuel bundles
were discharged based on the radiation signals, In the prehnn
nary data set, which was Timited ad consisted of four distinet
bumup regrons, the neural network model vorrectly predicted
the burnup region with an accuracy of 92%.,

INTRODUCTION

Nuclear power stations in the United States contain reac
tor cores, which can be accessed from only one enxd, usually
the top; fuel can be accessed only when the reacior is shit
down, One safeguards advantage 1o this type of reactor s that
itis relatively easy for a nuclear safeguarding agency to mom
tor the Tueling process: an inspector can be sent o the site 1o
oversee (he fuehng procedure. On load nuclear reactors differ

o Py work .-u.|-|;|:ul-c:(l- Iv_\'. the U1 S Depantment of Energy,
Oflice of Safeguands md Securily and Office of Army Conaol
and Nonprohiferanon

from those in the Uniled States, in that operators may remolely
oblain access W the core from both ends, and the resclots can
be continuously fueled without shutting them down. Such an
operation offer a fuel management advantage, but a safeguards
challenge, becuuse it provides a greater opportunity for the
diversion of nuclcar malerial.

On load reacwrs are well suited for producing pluto
nium from their standard fuel bundles. Safeguarding an on
load reactor requires keeping track of fuel as it is pushed
through the core. When a fresh fuel bundle is pushed in one
side, a spent fuel bundle is simultaneously discharged into o
collection mechanism on the other side. Using this fueling
scheme, a typical on load reactor will discharge §5 10 65 luel
bundtes per week. Figure 1 shows a conceptual diagram of this
fucling cycle. Because this is an ongoing process, it is labor
intensive for a safeguanding agency to have an inspector on
site o contimuously monitor re fueling,.

tag 1 Coaceptual diagrar of fueling cvele



To provide data that are uscful w inspeciors, a core
discharge monitor (CDM) sysiem' has been installed on the
on-load reacor. The CDM collects data continuously and
auomatcally from radiation sensors that monitor the reactor
core and the fueling process of the on-load reactor. Currently,
the CDM dala are manually examined by a safcguards inspec-
tor using graphical review sofiware to delermine when on-line
fueling activiry occurred. Because this system has the potential
lc gencrate massive quanlities of data, efficieni aulomatic
algorithms would help make interpretations. These algorithms
could extract information from the data, reduce analysis times,
and relieve inspectors from tme-consuming manual data
reviews. Automated quantitative analysis programs could help
saleguarding agencies gain a belter perspective on the com-
plete picture of the fueling activity of an on-load nuclear reac-
tor. These programs could provide a cost-effective solution for
automited monitoring of on-load reactors, significandy reduc.
ing personnel time and effort. In this paper we discuss proto-
type patiern recognition and neural network sofiware devel-
oped W test automated data analysis and provide a tool for
inspectors. The pallern recognition program was developed 1o
test the feasibility of analyzing CDM data to identify wher,
fucl bundic pushes occutred during on line refueling and to
monitor the power Jevel of the reactor. The neural network
model was developed w test the feasibility of determining the
region on the reactor face from which each fuel bundle set was
discharged and o vy to predict the bumup of fuel bundles.
These programs were lested using preliminary start up data
collected from a CDM system mstalled on an on load reactor.

CORFE DISCHARGE MONITOR (CDM)SYSTEM

The CDM system used in this Lady consists of fowr
gamma ray and neutron detectors (GRANDS) Tocated nean the
nuclear core: two on each reactor face, The faces of the reactor

core are on the casl and wesl sides of the building. Fueling takes
place from east to west or west 1o cast and each GRAND dewector
array is designated by its location in relationship o the core, either
the southeaslt (SE). northeast (NE), southwest (SW). or northwest
(NW) corner as shown in Fig. 2. The GRAND operates continu-
ously, collecing daia at discrele time intervals from the detecwor
arrays. These arrays monitor radiation signals from the reactor thal
show the discharge of spent fuel from the reactor core. The dala are
ransmitted 10 an MS-DOS computer for permanent recording,
archiving, and analysis by inspectors.

Fach GRAND collects nuclear radiation data from the detec-
wer enclosure, filters iy, time stamps it, and temporarily stores it. The
dawa are tihen fed o the cellecuon computer upon request for more
permanent storsge. Al a later time, data can bhe off-loaded from the
collection computer for ofT-line review. The detector duta fed from
the GRAND consist of five channels of information. The channels
are laheled as follows: fission chamber A, fission chamber B, fission
chamber C, ion chamber |, and ion chamber 2. Fission chamber A
corresporuls 1o the first neutron detector in the detector enclosure.
Fission chumber B is another view of the first neutron detector,
which can be used for tamper :letection. The second neutron detec
or in cach detector enclostre is labeled as fission chamber C. This
neutron detector iy not wired o its corresponding GRANID, but
rather 10 the GRAND on the opposing face. For example, the NE
fission chamber C is wired into the NW GRAND, and the NW (is
sion chamber C is wired into the NE GRAND. This provul. - the
overall system with a backup, in case the GRAND lor one ot the
detectors fails. This cross wiring is shown in Fig, 2 as the sphee box
tetween the two GRANDS on each wde of the reactor core.

Finally, the two gamma ray detedtors comespored to the ion
chamiber 1 and 2 channels. respectively. Figure 3 shows the lavout
of a dewector enclosure. An indepth discussion of the detector
assemblies and the GRAND electonies package can be tound in
Ret. 2
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The GRAND records data every 1010 11 seconds requi
ing around HMX) megabytes to store all the data points collected
from one reactor for 90 days; normally statistically insignili
cant data are filiered so the actual data amount stored is closer
to 10 10 20 megabytes per 90 days. Ttis impractical for inspec
tors o quantitatively wnalyze this much data, Shawn i Fig 4
are graphs of data from two detectors during one particulur
day. Each large spike on the graph corresponds 1o a pair of luel
bundies being dischaged from the reactor. Smaller spikes or
decay curves or buth on the graph may cortespond to other
activities such as the rotanon of the fueling machine or the
radhom tve decay ot the spent Tuel being held m the Tueling
machine during arefucling operanon Reactor power level vcan
alwo be determuned from the data becanse the backpround level
the detectors are sensing correspounds o the cunrent power
level of the reactor. The background i this context s consd
cred 10 be the amount of radiation the reactor ennty when no
tuel v present outside of the core A safeguards mspecior
counts the number of spikes on the graph o determune the ol
namber of fuel pushes the renctor made we A parnculae day
The connted number of fuel pushes s then comparad o taal
uy decBavations tor ssfeguandy verticanon Anautomated jao
eens can conskderahly redioce the aalyas nme sl lielp
sleguards mspecton eview the arge solume of CDOM data

AUTOMATED SOFTWAREF ANALYSIN

We develuped prototype analysis soltwire loanvestigale
the eavibihty of the ollow g olyecnves
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Fig 4 Sample CDM data from an on load reactor

i} Conrelatmy events etween detector chapnels o
waure the Channels are operating corectly mmd o
check for possible tampening,

5 Idenutying the fuelmy, channel from which the
spent tuel was dise barged, aned

6 ety the burnup af discharged spent tael
Inindles

A protongs padem recopmtion software el CHA
Andlyaan, was developed o test obpectives 1 through b Anea
tal networh model was developed o e the feas ity of e
dictng, Tuel bumop ad Tocation of fuey daischio ged troe the
rewtor To fully est COM Analyas and the newral network
models, aocomaderable wmount of date e needed For s
stindy, only wbout Mbdays of data were avmlable Althoagh the
Wt anount of datn wsed was aparse, the analyss soliwane
WUl pettonmed well suppestug thee approach coubl bedevel
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CDM Analysis makes two passes over the CDM data
during its search for arcas of interest. In the first pass, it slides
an average along the signal looking for significant changes.
When the slope of the signal jumps above or below Lhe sliding
average by more than 10%, the data points are flagged for later
examination. In the first pass, a large quantily of dawa may be
flagged as interesting. To reduce the clutier, a second pass is
made over jusl the areas that were flagged. Arcas near each
other in the time series are clustered logether wita the maxi-
mum dala point being marked as the middle of the event. From
the resulting list, a report can be generated (o alert the safe-
guards investigator w specific areas of the data. Radiation
spikes caused by refucling are found by setting the scarch
threshold very high (50%). This technique provides all the
fueling spikes for a given data sel.

MONITORING REACTOR POWER LEVEL AND
POWER LEVFEL CHANGES

Once the arcas of interest are identified, power level
monitoring is straightforward. When no events are oceurring,
the background radiation sensed corresponds 1o the reactor
power level. The average of the background can be used to
compute the power level by establishing a baseline reading of
what is considered to be full power. This baseline is computed
by examining data from a reactor that is operating at a fixed
power without fuel outside the core. The averige value
recorded by cach detector is used as the basehine. This baselaie
is marked on the graph in Frg. S by a hozontal e, 1 the
average value of the buckpround moves from this hasehine,
then the power level is changing. The data have shown thin
most power changes oceurted ma step wise fashion CDM
Analysiy evaluaes the power changes i the followimg  man
ner It the reactor power s rased ot lowered, the slope ol the
average hckground stls o weome very steep s
murhed ay the beganning ol o power change When this slope
Tattens out apam, the cmd ol the power change i marked The
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new value al which the average background comes 1o rest is
considered the new power level of the reactor. The average
background as a percentage of the pre-defined baseline is the
percentage of full power at which the reactor is running,

Currendly, CDM Analysis does nol ¢xamine more than
one channel on one detector when making its power level
computations. In & produclion-quality analysis package, this
perceatage should be an average of all the percentages com
puied from all channels .n all deweclors. By taking power level
measurements from all sides of the reactor core and averaging
them, we could obtain a more accurate power level reading
Even though examining just one channel gives a fairly accu
rule reading, within $%, examining all channels is a much
betier strategy because it provides a redundancy check. Figure
6 is an example of the power level of a reactor being raised
from startup w full power. Notice that the power chunges
oceur in multiple steps. CDM Analysis is also capable of prini
ing a report that dewils each siep of the power level change
and the power level to which the reactor moved.,
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Fig. 6 The muluple sieps of a power level Change.

STATISTICAL PHHENOMENA OF CDM DATA

We statistically analyzed the avarluble CDM data o 1es
the conelanon of the herght ot the padiation ypikes from
luel dincharge evenis with the tuel buznup We also cross
correlated radianon siggmals from detectors i diflesent pos
tons (o try to detemune the Jocwtuon of the luel chanoel dunmg
wretuchng event

Determunng barnnp s o difhenli, muluvanare poblem
The CDM data showed that detectore on one face ol the
reac ton aee mnagiticantly aftectesd by refuelmg events acour
tnyy on the opposite lace A sigmbicoant conelanon does et
etween detecior mrays located on the swme tace of the
teacton The vanianee i the o chnber datn was found o be
pronomeced s eflect was trwed 1o datn samphng with
msuflicent mteptation tme o prosade accurate onchannel
cunents The neatton channels were uor aflecred nd proyaded
stnble tendangs that were wed for the analy s !



NEURAL NETWORKS FOR SOLVING THE
FUEL GEOMETRY PROBLEM

Neural networks are based on a mathematical model
that is derived from cell biology.? These networks are orga-
nized into layers consisling of several neurons (nodes) con-
necied with adjustable weights. Each layer performs a particu
lar funchion. The input layer processes the data being pre-
sented w the network, one or more hidden luyers encode **fea-
tures” in the datws, and the output layer holds the response of
the network 1o a given input.

Two phases of operation are required: the leaming phase
and the testing and recall phasc. Learning consists of present-
ing a Stimulus (an input vector) to the input layer together with
a desired 1 sponse. The network then calculates a result using
the current weights and given input values, This “answer™ is
next compared with the desired response. If a difference of
sulficient magnitude exists, the weight values are adjnsted.
QOver time, as this leaming process is repeated with more
vectors, the weights will converge, and the network 1s said o
be trained. During the testing/recall phase, similar examples
are presented to the network w test whether the training was
adequale. The difference between the desired and acual out
pul is 8 mensuee of success, with differences of smaller magni
tude representing  greater success than  those ol larger
magnitile.

When using neural networks, one must obtain an
adequate sot of ramng data, Teoas difticalt o quantify the
amount of g data requited for good results because the
quantity depends one the complexity of the records and the
number of “feanires’” embedded me the data. The Y0 davs of
available reactor data vielded only 170 examples of fuel
dhschmpe events, which we consider mumanal for adequine
g amd tesung. In o addhinon, these events came from only

1 2 3 4 5 6 78 9 10 11

90 of the 460 available fuel channels in the reactor core and
represented a start-up activity rather than nommal refueling.
Even with these limitauons, we were siill able o train a neural
network 1o classify the data into different regions on the face
of the reactor.

The first neural network model divided the channel map
inw eight regions. This channel map and the eight regions are
shown in Fig. 7. Almost all the regions were chosen because of
the distribution of the points in the available daw. Because
detectors on one face do not rehiably see events on the oppos
ing face, only 10 channels from the same face out of the 20
owal channels were used in the neural network model. The ion
chambers act as noise during the training precess w help
separate the input vectors into appropriaie categories. Back
propagation was chosen as the modeling paradigm because of
its ability 1o use real-valued inputs.® The neural networks usad
in this proof-of-principle were created using NeuralWorks
Professional 11/Plus.® u commercial neural network develop
ment wol manufactured by NeuralWare, Inc.

NEURAL NETWORKS FOR FUEL BURNUP
PREDICTION

Because it may be imponant to determune if a facihity 1s
discharging low -burmup fuel from the reactor, we built a neural
network model similar to the one deseribed above 1o predict
fuel burnup. 1t is difficult 10 compute an actual value (or the
bumup of cach individual fuel bundle because the spike
recorded by the CDM s an addive value of two bundles
being discharged simultancously. In this data set, buraup el
into one of fow distinet regions Therefore, we built a neural
nework o classify burnup imte one ol the towr categones
based upon the CDM data, as shown in by, 8.
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Fig. 8. Four categories of recorded burnups in sample duta.

RESULTS OF NEURAL NETWORKS FOR SOLYV-
ING GEOMETRY AND BURNUP

The ncural networks used for solving the geometry
problem were rained and tested on data from the east face of
the reactor, although the west face could have been used just
as well. The raining set consisted of 63 patterns and the test
setof 72 patiems. After 50,000 uaining iterations, thie network
comrectly classificd the region of the luel discharge in 82% of
the patterns in the test set. For the fuzl burnup problem, the
network performed better, with an acoueesy o 9240 in predict
ing fuel bundle burnup. In spite of the very small dita set, the
networks performed remarkably well The result was a neural
network model ol reaclor geometry that comelates power
level, burnup, and the number of fuel bundles pusied through
the resclon.

CONCLUSIONS

The CDM Analyus tool has shown the potential for
automated analysis of CDM data 1o determine seluchng activ
ity and 10 montor the reactor power level. Nearal network
inmplementations for determining the location ol fuel diss hanpe
and the burnap of fuel bundles appear successfil enough o
wurrunt further tesearch. e sppears that neural network mocdels
could be developed o provide close o 1%, accurmcy in pre
dicting, position ard bumup il a complete set of representative
datn from an opersting on kewd resctor were available e
data nealed o achieve this capability should ichide tuel
o shes from sll 160 channels of the resctor face and a com
piete vydde of fuel thiough alh 18 posiions an every channel

Future work shoull inchide devismg a0 more accurate
technique {or determimmg mreas of mterest in the CDM data,
tather than nsbiding avernge Power level momionng usimg an
average over all 20 channels wall also vield nomore sccune
power level caleulanon. Deticiendies m the collection of quan
titative datn should be conrected We need more snmples ol

datu per ut me and apamma Channe b ieading more epre

sentative of the measurement period. In addition, different
types of neural network models should be ried once a repre
sentative amount of data has been obtamed. The portability of
neural network models o other reactors of the same type
should also be investigated. Neural network models hold great
promise for future work in the area of core discharge monitor-
ing and automated examination of large volumes of continu
ously collected data w improve  nuclear safeguards. We
firmly believe thal a commercial-grads tool for monitoring
power and counting fuel bundles from CDM data should be
developed.
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